Qualifying exam lists
Final: version 4.1
ᴍᴅ Pᴀᴄᴇʀ
A Note on Interpretation: number of articles follow list headings and section titles
Causal inference and explanation, 34
Explaining Explanation, 5
- Salmon, W. (1989). Four Decades of Scientific Explanation, University of Pittsburgh Press, Pittsburgh.
- Gopnik, A. (2000). Explanation as orgasm and the drive for causal understanding: The evolution, function and phenomenology of the theory-formation system. In F. Keil & R. Wilson (Eds.) Cognition and explanation. Cambridge, Mass: MIT Press.
- Thagard, P. (2006). Evaluating explanations in science, law, and everyday life. Current Directions in Psychological Science, 15, 141-145.
- Trout, J.D. (2007). The Psychology of Scientific Explanation. Philosophy Compass, 2/3, 564-591.
- Lombrozo, T. (2012). Explanation and abductive inference. In K.J. Holyoak and R.G. Morrison (Eds.), Oxford Handbook of Thinking and Reasoning (pp. 260-276), Oxford, UK: Oxford University Press.
Bayesian Learning as a model of of Human Causal Learning, 3
- Steyvers, M., Tenenbaum, J., Wagenmakers, E.J., & Blum, B. (2003). Inferring causal networks from observations and interventions. Cognitive Science, 27, 453-489.
- Sloman, S.A., & Lagnado, D. (2005). Do we “do”? Cognitive Science, 29, 5-39.
- Griffiths, T. L., & Tenenbaum, J. B. (2005). Structure and strength in causal induction. Cognitive Psychology, 51, 354-384.
Simplicity, unification, and what makes an explanation good, 5
- Kuhn, T.S. (1977). Objectivity, value judgment, and theory choice. In The Essential Tension: Selected Studies in Scientific Tradition and Change. Chicago and London: University of Chicago Press.
- Read, S. J., & Marcus-Newhall, A. R. (1993). Explanatory coherence in social explanations: A parallel distributed processing account. Journal of Personality and Social Psychology, 65, 429-447.
- Preston, J., & Epley, N. (2005). Explanations versus applications: The explanatory power of valuable beliefs. Psychological Science, 18, 826-832.
- Lombrozo, T. (2007). Simplicity and probability in causal explanation. Cognitive Psychology, 55(3), 232-257.
- Lombrozo, T. (2011). The instrumental value of explanations. Philosophy Compass, 6, 539-551.
Choosing explanations, Diagnosis, and Attribution:
Reasoning from observations to their causes, 5
- Spellman, B. A. (1997). Crediting causality. Journal of Experimental Psychology: General, 126, 323-348.
- Nielsen, U., Pellet, J.-P., & Elisseeff, A. (2008). Explanation trees for causal Bayesian networks. (D. McAllester & P. Myllymäki, Eds.) Proceedings of the 24th Conference in Uncertainty in Artificial Intelligence. pp. 427–434.
- Yuan, C., & Lu, T.-C. (2008). A General Framework for Generating Multivariate Explanations in Bayesian Networks. Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, 1–6.
- Malle, B. F. (2011). Time to give up the dogmas of attribution: An alternative theory of behavior explanation.Advanceschapter.pdf) In J. M. Olson and M. P. Zanna, Advances of Experimental Social Psychology (Vol. 44, pp. 297-352). Burlington: Academic Press.
- McCoy*, J. M., Ullman*, T. D., Stuhlmuller, A., Gerstenberg, T., and Tenenbaum, J.B. (2012). Why blame Bob? Probabilistic generative models, counterfactual reasoning, and blame attribution. Proceedings of the Thirty-Third Annual Conference of the Cognitive Science society. * = co-first author
Causal Mechanism and Inferring Hidden Causes, 5
- Shultz, T. R. (1982). Rules of Causal Attribution. Monographs of the Society for Research in Child Development, 47(1), 1-51.
- Ahn, W. K., Kalish, C. W., Medin, D. L., & Gelman, S. A. (1995). The role of covariation vs. mechanism information in causal attribution. Cognition, 54, 299–352. .
- Kushnir, T., Gopnik, A., Lucas, C., & Schulz, L.E. (2010). Inferring hidden causal structure. Cognitive Science, 34, 148-160.
- Buchanan, D.W., & Sobel, D.M. (2011). Mechanism-based reasoning in young children. Child Development. 82, 6, 2053-2066.
- Gweon, H., & Schulz, L. (2011). 16-Month-Olds Rationally Infer Causes of Failed Actions. Science, 332(6037), 1524.
Human Causal inference in time, 5
- Hagmayer, Y., & Waldmann, M. R. (2002). How temporal assumptions influence causal judgments. Memory & Cognition, 30 (7), 1128-1137.
- Lagnado, D.A., & Sloman, S.A. (2006). Time as a guide to cause. Journal of Experimental Psychology: Learning, Memory & Cognition, 32, 451-460.
- Greville, W.J. & Buehner, M.J. (2007). The influence of temporal distributions on causal induction from tabular data. Memory & Cognition, 35, 444–453
- Lagnado, D.A., & Speekenbrink, M. (2010). The influence of delays in real-time causal learning..pdf) The Open Psychology Journal, 3(2), 184-195.
- Greville, W.J., & Buehner, M.J. (2010). Temporal Predictability Facilitates Human Causal Learning. Journal of Experimental Psychology: General, 139(4), 756–771
Additional considerations in causal explanation, 6
- Hilton, D. J., & Slugoski, B. R. (1986). Knowledge-based causal attribution: The abnormal conditions focus model. Psychological Review, 93(1), 75.
- Cheng, P. W. (1997). From covariation to causation: A causal power theory. Psychological review, 104(2), 367.
- Novick, L.R., Cheng, P.W. (2004). Assessing Interactive Causal Influence Psychological Review, 111(2), pp. 455-485.
- White, P.A. (2009). Not by contingency: Some arguments about the fundamentals of human causal learning. Thinking & Reasoning 15 (2), pp. 129-166.
- Glymour, C., Danks, D., Glymour, B., Eberhardt, F., Ramsey, J., Scheines, R., Spirtes, P., Teng, C.M., Zhang, J. , (2010). Actual causation: a stone soup essay. Synthese. 169-192
- Keil, F.C. (2010). The Feasibility of Folk Science. Cognitive Science, 34, 826-862.
2013-08-21 25
2013_35_5_1311 18
2013_36_3_1400 7
2013_36_7_2342 2
2013_37_2_1437 0
Rational Probabilistic Models of Cognition Reading List:
Investigating the possibility of a Bayesian Mind, 29
Foundations of rational, probabilistic models of cognition, 5
- Shepard, R.N. (1987). Toward a universal law of generalization for psychological science. Science, 237, 1317-1323.
- Chapter 1 from Anderson, J. R. (1990). The Adaptive Character of Thought. Hillsdale, NJ: Erlbaum.
- Tenenbaum, J. B., & Griffiths, T. L. (2001). Generalization, similarity, and Bayesian inference. Behavioral and Brain Sciences, 24,629-641. (pdf)
- Chater, N., & Vitányi, P. M. B. (2003). The generalized universal law of generalization. Journal of Mathematical Psychology, 47(3), 346–369.
- Chapter 1, Foreward & Afterward from Marr D. (2010). Vision. A Computational Investigation into the Human Representation and Processing of Visual Information., The MIT Press. Foreword by Shimon Ullman, afterword by Tomaso Poggio.
Theories of a bayesian mind, 3
- Jacobs, R. A. & Kruschke, J. K. (2011). Bayesian learning theory applied to human cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 2, 8-21.
- Griffiths, T. L., Chater, N., Kemp, C., Perfors, A., & Tenenbaum, J. B. (2010). Probabilistic models of cognition: Exploring representations and inductive biases. Trends in Cognitive Sciences, 14, 357-364.
- Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011) How to grow a mind: Statistics, structure, and abstraction. Science, 331, 1279-1285.
Theories in a bayesian mind, 5
- Griffiths, T. L., & Tenenbaum, J. B. (2009). Theory-based causal induction. Psychological Review, 116(4), 661–716. doi:10.1037/a0017201
- Kemp, C. Tenenbaum, J. B., Niyogi, S. & Griffiths, T. L. (2010). A probabilistic model of theory formation. Cognition. 114(2), 165-196.
- Kemp, C., Goodman, N. D., & Tenenbaum, J. B. (2010). Learning to Learn Causal Models. Cognitive Science, 34(7), 1185–1243. doi:10.1111/j.1551-6709.2010.01128.x
- Goodman, N. D., Ullman, T. D., & Tenenbaum, J. B. (2011). Learning a theory of causality. Psychological Review, 118(1), 110–119. doi:10.1037/a0021336
- Ullman, T. D., Goodman, N. D., & Tenenbaum, J. B. (2012). Theory learning as stochastic search in the language of thought. Cognitive Development, 1–53.
Different meanings of meaning when modeling meaning, 5
- Griffiths, T. L., Steyvers, M., & Tenenbaum, J. B. (2007). Topics in semantic representation. Psychological Review, 114, 211-244.
- Steyvers, M., & Tenenbaum, J. B. (2005). The large scale structure of semantic networks: Statistical analyses and a model of semantic growth. Cognitive Science, 29, 41-78.
- Griffiths, T.L., & Tenenbaum, J.B. (2007). From mere coincidences to meaningful discoveries. Cognition, 103, 180-226.
- Kemp, C. (2012). Exploring the conceptual universe. Psychological Review. 119(4), 685-722.
- Navarro, D. J., Perfors, A., & Vong, W. K. (2013). Learning time-varying categories. Memory & Cognition, 1–11.
- Bonawitz, E., Ullman, T., Gopnik, A., & Tenenbaum, J.B. (2012) Sticking to the evidence? A computational and behavioral case study of micro-theory change in the domain of magnetism. 2012 IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL)
Formal frameworks for continuous-temporal, causal relations, 6
Continuous time bayesian networks (2 of 6)
- Nodelman, U., Shelton, C. R., & Koller, D. (2002). Continuous time Bayesian networks. 378–387.
- Gopalratnam, K., Kautz, H., & Weld, D. S. (2005). Extending continuous time bayesian networks In Proceedings of the National Conference on Artificial Intelligence 20(2) p. 981.
Point process models (4 of 6)
- Simma, A. & Jordan, M. I. (2010). Modeling events with cascades of Poisson processes. In P. Grunwald and P. Spirtes (Eds.), Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence (UAI), AUAI Press.
- Blundell, C., Heller, K. A., & Beck, J. M. (2012). Modeling Reciprocating Relationship with Hawkes Processes. In Advances in Neural Information Processing Systems pp. 2609-2617.
- Cho, Y. S., Galstyan, A., Brantingham, J., & Tita, G. (2013). Latent Point Process Models for Spatial-Temporal Networks..
- Gomez-Rodriguez, M. Leskovec, J. and Schoelkopf, B. (2013). Modeling Information Propagation with Survival Theory. International Conference on Machine Learning (ICML).
Challenges to Probabilistic, Rational, (or) Bayesian models in Cognitive Science, 5
- Godfrey-Smith, P. (2001). Three kinds of adaptationism. Adaptationism and optimality, 335-357.
- Freedman, D.A. (2006)Statistical models for causation: What inferential leverage do they provide? Evaluation Review vol. 30 pp. 691–713.
- McClelland, J. L., Botvinick, M. M., Noelle, D. C., Plaut, D. C., Rogers, T.T.,Seidenberg, M. S., and Smith, L. B. (2010). Letting Structure Emerge:Connectionist and Dynamical Systems Approaches to Understanding Cognition. Trends in Cognitive Sciences, 14, 348-356.
- Jones, M. & Love, B.C. (2011). Bayesian Fundamentalism or Enlightenment? On the Explanatory Status and Theoretical Contributions of Bayesian Models of Cognition. Behavioral and Brain Sciences, 34, 169-231. + commentary and responses
- Perfors, A. (2012). Bayesian models of cognition: What's built in after all? Philosophy Compass 7, 127-138.
- Danks, D. (2013). Moving from Levels & Reduction to Dimensions & Constraints proceedings of the cognitive science society.
2013-08-21 18
2013_35_5_1313 16
2013_36_7_2352 4
2013_37_2_1438 0
Science as a Cognitive, Computational Process:
the lives of ideas, 32
Evolution and contagion of ideas: the rise, fall and competition of ideas 5
- Chapter 1 (pp.8-101) in Lakatos, I. (1978). The methodology of scientific research programmes: Philosophical Papers Volume 1. Cambridge: Cambridge University Press.
- Hull, D. L. (1988) Science as a Process: An Evolutionary Account of the Social and Conceptual Development of Science Chicago: University of Chicago Press.
- Shi X. , Leskovec J. , McFarland D. A. (2010).Citing for High Impact Joint Conference on Digital Libraries (JCDL), 2010.
- Godfrey-Smith, P. (2012). Darwinism and Cultural Change Philosophical Transactions of the Royal Society B 367, 2160-2170
- Myers, S. & Leskovec, J. (2012). Clash of the Contagions: Cooperation and Competition in Information Diffusion IEEE International Conference On Data Mining
Revolutions and pandemics of ideas: rejected and received views 4
- Kuhn, T.S. (1962). The Structure of Scientific Revolutions. Chicago: University of Chicago Press.
- "Introduction" and "Theoretical and Experimental Cultures" Galison, P. (1987). How experiments end. University of Chicago Press.
- Salmon, W. (1990). Rationality and objectivity in science or Tom Kuhn meets Tom Bayes. Scientific theories, 14, 175–204.
- Henderson, L., Goodman, N.D., Tenenbaum, J.B., & Woodward, J.F. (2010). The Structure and Dynamics of Scientific Theories: A Hierarchical Bayesian Perspective. Philosophy of Science 77 (2):172-200.
Rutjens, B. T., van Harreveld, F., & van der Pligt, J. (2013). Step by Step Finding Compensatory Order in Science. Current Directions in Psychological Science, 22(3), 250-255.
Rutjens, B. T., van Harreveld, F., van der Pligt, J., Kreemers, L. M., & Noordewier, M. K. (2013). Steps, stages, and structure: Finding compensatory order in scientific theories. Journal of Experimental Psychology: General, 142(2), 313.
Styles of scientific reasoning or ideas' ways of becoming, 5
- Hacking, I. (1982). Language, Truth and Reason. Reprinted in Historical ontology (2002). (pp. 583-600). Springer Netherlands.
- Crombie, A. C. (1988).Designed in the Mind: Western Visions of Science, Nature and Humankind History of Science 26, 1-12.
- Hacking, I. (1992).'Style' for Historians and Philosophers. Studies in History and Philosophy of Science 23, 1-20. Reprinted in Historical Ontology
- Hacking, I. (2012). 'Language, Truth and Reason' 30 years later. Studies in History and Philosophy of Science Part A.
- Lassiter D., & Goodman, N. D.(2012).How many kinds of reasoning? Inference, probability, and natural language semantics Proceedings of the Thirty-Fourth Annual Conference of the Cognitive Science Society.
Research, cooperation despite competition, and the division of cognitive labor 5
- "The Organization of Cognitive Labor" (chapter 8) in Kitcher, P. (1993).The advancement of Science. New York, Oxford University Press.
- Keil, F.C., Stein, C., Webb, L., Billings, V.D., & Rozenblit, L. (2008). Discerning the Division of Cognitive Labor: An Emerging Understanding of How Knowledge is Clustered in Other Minds. Cognitive Science, 32(2), 259-300.
- Weisberg, M. and Muldoon, R. (2009). Epistemic Landscapes and the Division of Cognitive Labor Philosophy of Science, 76, 225-252
- West, R. & Leskovec J. (2012).Automatic versus Human Navigation in Information Networks by AAAI International Conference on Weblogs and Social Media
- West, R. & Leskovec J. (2012). Human Wayfinding in Information Networks ACM International Conference on World Wide Web
- Strevens, M. (2013). Herding and the Quest for Credit Journal of Economic Methodology 20, 19–34.
Human Ontogeny as a lens on development and the growth of scientific ideas, 13
- "Matters of Ontology" and "Conclusions" (chapter 6 & 7) in Carey, S. (1985) Conceptual Change in Childhood Cambridge, MA: MIT Press
- Vosniadou, S. & Brewer W.F. (1992). Mental Models of the Earth: A Study of Conceptual Change in Childhood Cognitive Psychology 24, 535-585
- Solomon, M. (1992). Scientific rationality and human reasoning. Philosophy of Science, 439-455.
- "Introduction" (Chapter 1) in Koslowski, B. (1996). Theory and Evidence: The Development of Scientific Reasoning. Cambridge, MA: MIT Press
- Gopnik A. (1996). The scientist as child. Philosophy of Science, 63, 4, 485-514.
- Carey, S., & Spelke, E. (1996). Science and core knowledge. Philosophy of science, 515-533.
- Solomon, M. (1996). Commentary on Alison Gopnik's "The Scientist as Child". Philosophy of science, 63(4), 547-551.
- Chinn, C. A., & Brewer, W. F. (1993). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science instruction. Review of educational research, 63(1), 1-49.
- Scientific Discovery as Problem Solving (Chapter 2) in Klahr, D. (2000). Exploring Science: The cognition and development of discovery processes Cambridge, MA: MIT Press
- Keil, F. C., & Newman, G. E. (2010). Darwin and development: Why ontogeny does not recapitulate phylogeny for human concepts. The Making of Human Concepts, 317.
- Cook, C., Goodman, N. D., & Schulz, L. E. (2011). Where science starts: Spontaneous experiments in preschoolers' exploratory play. Cognition, 120(3), 341–349.
- Schulz, L. (2012). The origins of inquiry: inductive inference and exploration in early childhood. Trends in cognitive sciences, 16(7), 382–389.
- Gopnik, A. & Wellman, H.M. (in press). Reconstructing constructivism: Causal models, Bayesian learning mechanisms and the theory theory. Psychological Bulletin.
2013-08-21 19
2013_35_5_1315 13
2013_36_7_2354 2
2013_37_2_1438 0